ALTER TABLE
Update a table’s definition or schema.
SyntaxALTER TABLE <table_name>
{Table_Action}
-- Add Columns
ADD COLUMNS ( <column_name1> <data_type> [, ... ] )
-- Drop Column
DROP COLUMN <column_name>
-- Modify Column Data Type
{ ALTER | MODIFY | CHANGE } COLUMN <column_name> <column_name> <data_type>
-- Modify Column Name (Iceberg tables only)
{ ALTER | MODIFY | CHANGE } COLUMN <old_name> <new_name> <data_type>
-- Set a Column-Masking Policy
MODIFY COLUMN <column_name>
SET MASKING POLICY <function_name> ( <column_name> [, ... ] )
-- Unset a Column-Masking Policy
MODIFY COLUMN <column_name>
UNSET MASKING POLICY <function_name>
-- Add or Drop a Row-Access Policy
{ ADD | DROP } ROW ACCESS POLICY <function_name> ( <column_name> [, ... ] )
-- Refresh Metadata
REFRESH METADATA
[ FOR PARTITIONS ( <partition_name> = '<value>') ]
[ { AVOID | AUTO } PROMOTION ]
[ { FORCE | LAZY } UPDATE ]
[ { MAINTAIN | DELETE } WHEN MISSING ]
-- Forget Metadata
FORGET METADATA
-- Create Aggregate Reflections
CREATE AGGREGATE REFLECTION <reflection_name> USING DIMENSIONS ( <column_name1>, <column_name2>, ... ) MEASURES ( <column_name1> ( <aggregation_type>, <column_name2> <aggregation_type> , ... ) )
[ PARTITION BY ( <column_name1>, <column_name2>, ... ) ]
[ LOCALSORT BY ( <column_name1>, <column_name2>, ... ) ]
[ ARROW CACHE ]
-- Create External Reflections
CREATE EXTERNAL REFLECTION <reflection_name> USING <table_name>
-- Create Raw Reflections
CREATE RAW REFLECTION <reflection_name> USING DISPLAY ( <column_name1>, <column_name2>, ...)
[ PARTITION BY ( <column_name1>, <column_name2>, ... ) ]
[ LOCALSORT BY ( <column_name1>, <column_name2>, ... ) ]
[ ARROW CACHE ]
-- Route Reflections
ROUTE REFLECTIONS TO { DEFAULT ENGINE | ENGINE { <engine_name> | <engine_uuid> } }
-- Partition Fields (Iceberg tables only)
{ ADD | DROP } PARTITION FIELD { <column_name> | <partition_transform> }
Parameters
<table_name>
String
The name of the table that you want to alter. The source can be in the scratch directory or a data lake source.
ADD COLUMNS ( <column_name1> <data_type>, <column_name2> <data_type>, ... )
String
Creates one or more columns that have the specified names, data types, and character limits. The size is an attribute of the data type.
These are the supported primitive types:
- BOOLEAN
- VARBINARY
- DATE
- FLOAT
- DECIMAL
- DOUBLE
- INTERVAL
- INT
- BIGINT
- TIME
- TIMESTAMP
- VARCHAR (The length is always 65536 bytes. If a length is specified, it is ignored.)
You can define complex types by using either of these two sets of syntax:
- Set 1
- struct_type:
ROW( name primitive_or_complex_type, .. )
- list_type:
ARRAY(primitive_or_complex_type)
ROW(innerfield INT, anotherinnerfield DOUBLE)
ARRAY(INT)
ROW(innerfield ARRAY(INT))
ARRAY(ROW(innerfield INT))
- struct_type:
- Set 2
- struct_type:
STRUCT <name : primitive_or_complex_type, ... >
- list_type:
{ LIST | ARRAY } < primitive_or_complex_type >
STRUCT<innerfield : INT, anotherinnerfield : DOUBLE>
LIST<INT>
ARRAY<INT>
STRUCT<innerfield : LIST<INT>>
LIST<STRUCT<innerfield : INT>>
- struct_type:
DROP COLUMN <column_name>
String
Drops the specified column. This action cannot be undone.
{ ALTER | MODIFY | CHANGE } COLUMN <column_name> <column_name> <data_type>
String
Changes the data type for a specified column. The size is an attribute of the data type.
Note:
You can only rename columns of scratch and Iceberg tables.
REFRESH METADATA
Refreshes the metadata associated with the specified table. You can choose to either do a full or partial metadata refresh. A full refresh will update the metadata for the entire table. A partial refresh will enable you to only update specified partitions. Optional clauses are available for refreshing a table's metadata. If you choose to use two or more of these clauses, they must be entered in a specified priority order:
- Promotion option: either
AVOID PROMOTION
orAUTO PROMOTION
- Update option: either
FORCE UPDATE
orLAZY UPDATE
- Missing option: either
MAINTAIN WHEN MISSING
orDELETE WHEN MISSING
Note:
If the table is not partitioned, you will receive an error when you attempt to refresh the metadata using the FOR PARTITIONS
clause.
FOR PARTITIONS ( <partition_name> = '<value>' )
String
Optional
Use this clause to do a partial refresh of the table's metadata.
The
<partition_name>
identifies the name of the partition to be refreshed.The
<value>
identifies the specific partition that should be refreshed. Must be contained in single quotes.
{ AVOID | AUTO } PROMOTION
Optional
Clauses that determine whether files and folders are promoted to datasets when you run a query.
The AVOID PROMOTION
prevents queries from promoting files/folders to datasets. The AUTO PROMOTION
allows queries to promote files/folders to datasets. This is the default option when you do not include a promotion clause.
{ FORCE | LAZY } UPDATE
Optional
Clauses that determine whether metadata is updated when you run a query.
The FORCE UPDATE
forces a full update of metadata. The LAZY UPDATE
does not perform a full update of metadata. This is the default option when you do not include an update clause.
{ MAINTAIN | DELETE } WHEN MISSING
Optional
Clauses that determine how missing metadata is handled when you run a query.
The MAINTAIN WHEN MISSING
Prevents missing metadata from being deleted during refresh. DELETE WHEN MISSING
deletes missing metadata during refresh. This is the default option when you do not include a clause.
FORGET METADATA
Deletes the metadata information stored in Dremio for the specified table until the next metadata refresh. The dataset can still be queried using SQL.
<reflection_name>
String
The name to give to the new reflection.
DIMENSIONS ( <column_name1>, <column_name2>, ... )
String
The columns to include as dimensions in the reflection.
MEASURES ( <column_name1> ( <aggregation_type> ), <column_name2> ( <aggregation_type ), ... )
String
The columns to include as measures in the reflection, and the type of aggregation to perform on them. The possible types are COUNT, MIN, MAX, SUM, and APPROXIMATE COUNT DISTINCT.
PARTITION BY ( <column_name1>, <column_name2>, ... )
String
Optional
The columns on which to partition the data horizontally in the reflection.
LOCALSORT BY ( <column_name1>, <column_name2>, ... )
String
Optional
The columns on which to sort the data that is in the reflection.
ARROW CACHE
Optional
Specifies that you want Dremio to convert data from your reflection’s Parquet files to the Apache Arrow format when copying that data to executor nodes. Normally, Dremio copies data as-is from the Parquet files as-is to caches on executor nodes, which are nodes that carry out the query plans devised by the query optimizer. Enabling this option can improve query performance even more. However, data in the Apache Arrow format requires more space on the executor nodes than data in the default format. You can use this option with Amazon S3.
DISPLAY ( <column_name1>, <column_name2>, ... )
String
The columns to include in the reflection.
{ DEFAULT ENGINE | ENGINE { <engine_name> | <engine_uuid> } }
String
Specify an engine to route reflections to either by the name or UUID of the engine. If not specified, the default engine will be used.
{ ALTER | MODIFY | CHANGE } COLUMN <old_name> <new_name> <data_type>
String
Changes the data type for a column, and gives you the option of to renaming the column. If you do not want to rename the column, set <new_name> to <old_name>.
Only three types of changes to primitive types are allowed:
- int to long
- float to double
- decimal(P, S) to decimal(P', S), if you are widening the precision
- Set 1
- struct_type:
ROW( name primitive_or_complex_type, .. )
- list_type:
ARRAY(primitive_or_complex_type)
ROW(innerfield INT, anotherinnerfield DOUBLE)
ARRAY(INT)
ROW(innerfield ARRAY(INT))
ARRAY(ROW(innerfield INT))
- struct_type:
- Set 2
- struct_type:
STRUCT <name : primitive_or_complex_type, ...>
- list_type:
{ LIST | ARRAY } < primitive_or_complex_type >
STRUCT<innerfield : INT, anotherinnerfield : DOUBLE>
LIST<INT>
ARRAY<INT>
STRUCT<innerfield : LIST<INT>>
LIST<STRUCT<innerfield : INT>>
- struct_type:
{ ADD | DROP } PARTITION FIELD { <column_name> | <partition_transform> }
String
Optional
ADD partitions the table data on the values in a single column or by using one of the partition-transformation functions. DROP drops the partition definition.
These are the partition-transformation functions:
Transform | Description |
---|---|
identity( <col> ) | Explicitly specified identity transform |
year( <col> ) | Partition by year. The column must use the TIMESTAMP data type. |
month( <ts_col> ) | Partition by month. The column must use the TIMESTAMP data type. |
day( <ts_col> ) | Partition by day. The column must use the TIMESTAMP data type. |
hour( <ts_col> ) | Partition by hour. The column must use the TIMESTAMP data type. |
bucket( <count>, <col> ) | Partition by hashed value into <count> buckets |
truncate( <length>, <col> ) | Partition by truncated value.
|
MODIFY COLUMN <column_name>
String
Specifies the column to which the masking policy will apply and mask data for. The UDF serving as the masking policy must accept and return the same data type as the column it is masking.
<function_name>
String
Specifies the function to use with this security policy. If a function with this name does not exist, then the affected table/view will not be reachable until the policy is dropped or a UDF created.
Examples
Add a columnALTER TABLE services
ADD COLUMNS (county varchar)
ALTER TABLE services
MODIFY COLUMN tip_amount tip_amount DECIMAL
ALTER TABLE struct_type
MODIFY COLUMN a a struct<x: varchar, y: bigint>
ALTER TABLE services
MODIFY COLUMN tip_amount gratuity_amount DECIMAL
ALTER TABLE services
REFRESH METADATA
ALTER TABLE services
REFRESH METADATA
AUTO PROMOTION
LAZY UPDATE
MAINTAIN WHEN MISSING
ALTER TABLE Samples."samples.dremio.com"."zips.json"
REFRESH METADATA FOR PARTITIONS (state = 'TX')
ALTER TABLE Samples."samples.dremio.com"."zips.json"
REFRESH METADATA FOR PARTITIONS (state = 'TX')
AUTO PROMOTION
LAZY UPDATE
MAINTAIN WHEN MISSING
ALTER TABLE Samples."samples.dremio.com"."zips.json"
FORGET METADATA
ALTER TABLE "@user1"."customers"
CREATE RAW REFLECTION customers_by_country USING DISPLAY (id,lastName,firstName,address,country)
PARTITION BY (country)
LOCALSORT BY (lastName)
ALTER TABLE Samples."samples.dremio.com"."zips.json"
CREATE AGGREGATE REFLECTION per_state
USING
DIMENSIONS (state)
MEASURES (city (COUNT))
LOCALSORT BY (state)
ALTER TABLE "Table 1" ROUTE REFLECTIONS TO ENGINE "Engine 1"
ALTER TABLE "View 1" ROUTE REFLECTIONS TO ENGINE "Engine 1"
ALTER TABLE "View 3" ROUTE REFLECTIONS TO ENGINE "Engine 1"
ALTER TABLE myTable ADD COLUMNS (address VARCHAR)
ALTER TABLE myTable ALTER COLUMN id id BIGINT
ALTER TABLE e.employees
MODIFY COLUMN ssn_col
SET MASKING POLICY protect_ssn (ssn_col, region)
ALTER TABLE e.employees
MODIFY COLUMN ssn_col
UNSET MASKING POLICY protect_ssn
ALTER TABLE e.employees
ADD ROW ACCESS POLICY state_policy ( state_col )
ALTER TABLE employees
DROP ROW ACCESS POLICY protect_ssn (ssn_col, region)